-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
101 lines (75 loc) · 2.77 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
""" This module contains useful utilities. Part of it was first written by Manuel Buen-Abad and Chen Sun for the repository snr_ghosts. See https://github.com/ChenSun-Phys/snr_ghosts and the licence therein for reuse.
Module author: Chen Sun
Year: 2020, 2021
Email: [email protected]
"""
import numpy as np
from scipy.interpolate import interp1d
def interp_fn(array, debug=False):
"""
An interpolator for log-arrays spanning many orders of magnitude.
Parameters
----------
array : An array of shape (N, 2) from which to interpolate.
debug : debugging switch
"""
array[array < 1.e-300] = 1.e-300 # regularizing small numbers
if debug:
print(array)
def fn(x): return 10**interp1d(np.log10(array[:, 0]),
np.log10(array[:, 1]), fill_value=np.nan, bounds_error=False)(np.log10(x))
return fn
def treat_as_arr(arg):
"""
A routine to cleverly return scalars as (temporary and fake) arrays. True arrays are returned unharmed. Thanks to Chen!
"""
arr = np.asarray(arg)
is_scalar = False
# making sure scalars are treated properly
if arr.ndim == 0: # it is really a scalar!
arr = arr[None] # turning scalar into temporary fake array
is_scalar = True # keeping track of its scalar nature
return arr, is_scalar
def scientific(val, output='string'):
"""Convert a number to the scientific form
:param val: number(s) to be converted
:param output: LaTeX "string" form or "number" form. (Default: 'string')
"""
val, is_scalar = treat_as_arr(val)
exponent, factor = [], []
string = []
for vali in val:
expi = np.floor(np.log10(vali))
print(expi)
faci = vali / 10**expi
# save it
exponent.append(expi)
factor.append(faci)
if round(faci) == 1.:
string.append(r"$10^{{{:.0f}}}$".format(expi))
else:
string.append(
r"${{{:.0f}}} \times 10^{{{:.0f}}}$".format(faci, expi))
exponent = np.array(exponent)
factor = np.array(factor)
string = np.array(string)
if is_scalar:
exponent = np.squeeze(exponent)
factor = np.squeeze(factor)
string = np.squeeze(string)
if output == 'string':
res = string
elif output == 'number':
res = (factor, exponent)
return res
def check_input(m, M, Rs, c, DM_profile):
"""simple check of input parameters
"""
if (DM_profile == "Soliton"):
flg = (m is None) or (M is None)
if flg:
raise Exception("Soliton input is incomplete.")
if (DM_profile == "NFW") or (DM_profile == "Burkert"):
flg = (Rs is None) or (c is None)
if flg:
raise Exception("Secondary DM component input is incomplete.")