-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo.py
132 lines (97 loc) · 5.21 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import os
import time
import argparse
import sys
import numpy as np
import torch
import torch.optim as optim
from tqdm import tqdm
from utils.metric_util import per_class_iu, fast_hist_crop
from dataloader.pc_dataset import get_SemKITTI_label_name
from builder import data_builder, model_builder, loss_builder
from config.config import load_config_data
from dataloader.dataset_semantickitti import polar2cat_done
from utils.load_save_util import load_checkpoint, load_checkpoint_1b1
def main(args):
pytorch_device = torch.device('cuda:0')
config_path = args.config_path
print("It Get Here")
configs = load_config_data(config_path)
print("It Doesn't Get Past")
dataset_config = configs['dataset_params']
train_dataloader_config = configs['train_data_loader']
val_dataloader_config = configs['val_data_loader']
val_batch_size = val_dataloader_config['batch_size']
train_batch_size = train_dataloader_config['batch_size']
model_config = configs['model_params']
grid_size = model_config['output_shape']
num_class = model_config['num_class']
ignore_label = dataset_config['ignore_label']
model_load_path = "./model_save_dir/model_save.pt"
SemKITTI_label_name = get_SemKITTI_label_name(dataset_config["label_mapping"])
unique_label = np.asarray(sorted(list(SemKITTI_label_name.keys())))[1:] - 1
unique_label_str = [SemKITTI_label_name[x] for x in unique_label + 1]
print("Unique Label:", unique_label)
print("Unique Label String:", unique_label_str)
np.save("demo_results/label_vals", np.array(unique_label_str))
my_model = model_builder.build(model_config)
if os.path.exists(model_load_path):
my_model = load_checkpoint_1b1(model_load_path, my_model)
my_model.to(pytorch_device)
loss_func, lovasz_softmax = loss_builder.build(wce=True, lovasz=True,
num_class=num_class, ignore_label=ignore_label)
train_dataset_loader, val_dataset_loader = data_builder.build(dataset_config,
train_dataloader_config,
val_dataloader_config,
grid_size=grid_size)
my_model.eval()
hist_list = []
val_loss_list = []
with torch.no_grad():
for i_iter_val, (_, val_vox_label, val_grid, val_pt_labs, val_pt_fea) in enumerate(
val_dataset_loader):
val_pt_fea_ten = [torch.from_numpy(i).type(torch.FloatTensor).to(pytorch_device) for i in
val_pt_fea]
val_grid_ten = [torch.from_numpy(i).to(pytorch_device) for i in val_grid]
val_label_tensor = val_vox_label.type(torch.LongTensor).to(pytorch_device)
predict_labels = my_model(val_pt_fea_ten, val_grid_ten, val_batch_size)
loss = lovasz_softmax(torch.nn.functional.softmax(predict_labels).detach(), val_label_tensor,
ignore=0) + loss_func(predict_labels.detach(), val_label_tensor)
predict_labels = torch.argmax(predict_labels, dim=1)
predict_labels = predict_labels.cpu().detach().numpy()
# To get points, I get the indices of val_pt_fea[0][:, 3:6] and convert those points to cartesian coordinates (polar2car in adtaset_semantickitti.py)
# To get labels for the points, I can use predict_labels[0][val_grid[0][:, 0], val_grid[0][:, 1], val_grid[0][:, 2]]
# The actual labels are at val_pt_labels at the same index
# first get points
xyz_pol = val_pt_fea[0][:, 3:6]
xyz = polar2cat_done(xyz_pol)
# get predicted labels for each point
predicted = np.array(predict_labels[0][val_grid[0][:, 0], val_grid[0][:, 1], val_grid[0][:, 2]]).reshape((-1, 1))
# get labels
actual = np.array(val_pt_labs)[0]
overall = np.concatenate((xyz, predicted, actual), axis=1)
overall.dump(f'demo_results/vals_%d' % i_iter_val)
for count, i_val_grid in enumerate(val_grid):
hist_list.append(fast_hist_crop(predict_labels[
count, val_grid[count][:, 0], val_grid[count][:, 1],
val_grid[count][:, 2]], val_pt_labs[count],
unique_label))
val_loss_list.append(loss.detach().cpu().numpy())
iou = per_class_iu(sum(hist_list))
print('Validation per class iou: ')
for class_name, class_iou in zip(unique_label_str, iou):
print('%s : %.2f%%' % (class_name, class_iou * 100))
val_miou = np.nanmean(iou) * 100
del val_vox_label, val_grid, val_pt_fea, val_grid_ten
print('Current val miou is %.3f' %
(val_miou))
print('Current val loss is %.3f' %
(np.mean(val_loss_list)))
if __name__ == '__main__':
# Training settings
parser = argparse.ArgumentParser(description='')
parser.add_argument('-y', '--config_path', default='config/semantickitti.yaml')
args = parser.parse_args()
print(' '.join(sys.argv))
print(args)
main(args)