Skip to content

Commit 5aca009

Browse files
committedApr 11, 2016
Version 3.5-2
1 parent 32f04e6 commit 5aca009

12 files changed

+13
-9
lines changed
 

‎DESCRIPTION

+2-1
Original file line numberDiff line numberDiff line change
@@ -1,11 +1,12 @@
11
Package: ncvreg
22
Version: 3.5-2
3-
Date: 2016-02-06
3+
Date: 2016-04-08
44
Title: Regularization Paths for SCAD and MCP Penalized Regression Models
55
Author: Patrick Breheny [aut,cre], Sangin Lee [ctb]
66
Maintainer: Patrick Breheny <patrick-breheny@uiowa.edu>
77
Suggests: survival, parallel
88
Description: Efficient algorithms for fitting regularization paths for linear or logistic regression models penalized by MCP or SCAD, with optional additional L2 penalty.
99
License: GPL-2
10+
BugReports: http://github.com/pbreheny/ncvreg/issues
1011
URL: http://myweb.uiowa.edu/pbreheny/publications/Breheny2011.pdf
1112
Depends:

‎NEWS

+6
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,9 @@
1+
3.5-2
2+
* Fixed bug for ncvsurv with integer penalty factors
3+
* Fixed rare numerical accuracy bug in cv fold assignments
4+
* Fixed LOOCV bug introduced by bias-correction feature
5+
* Added user interrupt checking
6+
17
3.5-1
28
* Fixed bug with penalty.factor for cv.ncvsurv when some columns may be
39
degenerate

‎README.md

+2-2
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,5 @@
1-
[![version](http://www.r-pkg.org/badges/version/ncvreg)](http://cran.r-project.org/web/packages/ncvreg/index.html)
2-
[![downloads](http://cranlogs.r-pkg.org/badges/ncvreg)](http://cran.r-project.org/web/packages/ncvreg/index.html)
1+
[![version](http://www.r-pkg.org/badges/version/ncvreg)](https://cran.r-project.org/package=ncvreg)
2+
[![downloads](http://cranlogs.r-pkg.org/badges/ncvreg)](https://cran.r-project.org/package=ncvreg)
33
[![codecov.io](https://codecov.io/github/pbreheny/ncvreg/coverage.svg?branch=master)](https://codecov.io/github/pbreheny/ncvreg?branch=master)
44

55
`ncvreg` fits regularization paths for linear, logistic, or Poisson regression models with nonconvex penalties, in particular the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) penalty. Coordinate descent algorithms are used to fit the models.
File renamed without changes.
File renamed without changes.

‎tests/fir.R ‎inst/tests/fir.R

File renamed without changes.

‎tests/ncvreg.R ‎inst/tests/ncvreg.R

File renamed without changes.
File renamed without changes.
File renamed without changes.
File renamed without changes.

‎man/ncvreg-package.Rd

+2-2
Original file line numberDiff line numberDiff line change
@@ -10,8 +10,8 @@
1010
\tabular{ll}{
1111
Package: \tab ncvreg\cr
1212
Type: \tab Package\cr
13-
Version: \tab 3.5-1\cr
14-
Date: \tab 2016-02-067\cr
13+
Version: \tab 3.5-2\cr
14+
Date: \tab 2016-04-08\cr
1515
License: \tab GPL-2\cr}
1616
Accepts a design matrix \code{X} and vector of responses \code{y},
1717
produces the regularization path over a grid of values for the tuning

‎man/ncvsurv.Rd

+1-4
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@
55
Cox regression models over a grid of values for the regularization
66
parameter lambda, with option for an additional L2 penalty.}
77
\usage{
8-
ncvsurv(X, y, model=c("cox","aft"), penalty=c("MCP", "SCAD", "lasso"),
8+
ncvsurv(X, y, penalty=c("MCP", "SCAD", "lasso"),
99
gamma=switch(penalty, SCAD=3.7, 3), alpha=1,
1010
lambda.min=ifelse(n>p,.001,.05), nlambda=100, lambda, eps=.001,
1111
max.iter=1000, convex=TRUE, dfmax=p, penalty.factor=rep(1, ncol(X)),
@@ -19,9 +19,6 @@ warn=TRUE, returnX=FALSE, ...)
1919
up time); the second column should be a binary variable with 1
2020
indicating that the event has occurred and 0 indicating (right)
2121
censoring.}
22-
\item{model}{Either "cox" for a Cox proportional hazards model or
23-
"aft" for an accelerated failure time (AFT) model. Note: AFT models
24-
are not yet implemented in this release of \code{ncvreg}.}
2522
\item{penalty}{The penalty to be applied to the model. Either "MCP"
2623
(the default), "SCAD", or "lasso".}
2724
\item{gamma}{The tuning parameter of the MCP/SCAD penalty (see

0 commit comments

Comments
 (0)
Please sign in to comment.