-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict.hqreg.R
57 lines (56 loc) · 1.87 KB
/
predict.hqreg.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
predict.hqreg <- function(object, X, lambda, type=c("response","coefficients","nvars"), exact = FALSE, ...) {
type=match.arg(type)
if (missing(X) && type == "response") stop("Need to supply 'X'")
beta <- coef.hqreg(object, lambda = lambda, exact = exact)
num_coef <- if (is.matrix(beta)) nrow(beta) else length(beta)
intercept_added <- (num_coef > length(object$penalty.factor))
if (type == "coefficients") return(beta)
if (intercept_added) {
if (is.matrix(beta)) {
b0 <- beta[1,]
b <- beta[-1,]
} else {
b0 <- beta[1]
b <- beta[-1]
}
if (type == "nvars") {
if (is.matrix(b)) return(apply(b!=0, 2, sum))
else return(sum(b!=0))
}
if (type == "response") return(sweep(X %*% b, 2, b0, "+"))
} else { # only when object is fitted by hqreg_raw with intercept = FALSE
if (type == "nvars") {
if (is.matrix(beta)) return(apply(beta!=0, 2, sum))
else return(sum(beta!=0))
}
if (type == "response") return(X %*% beta)
}
NULL
}
coef.hqreg <- function(object, lambda, exact = FALSE, ...) {
if (missing(lambda)) {
beta <- object$beta
} else if (exact) {
# augment the lambda sequence with the new values, and refit the model
ls <- object$lambda
ind <- match(lambda, ls, 0)
if (any(ind == 0)) {
ls <- unique(rev(sort(c(lambda,ls))))
object <- update(object, lambda=ls)
ind <- match(lambda, ls)
}
beta <- object$beta[, ind]
} else {
# use linear interpolation to estimate coefficients for supplied lambda
ls <- object$lambda
lambda[lambda>max(ls)] <- max(ls)
lambda[lambda<min(ls)] <- min(ls)
ind <- approx(ls, seq(ls), lambda)$y
left <- floor(ind)
right <- ceiling(ind)
weight <- ind %% 1
beta <- (1-weight)*object$beta[,left] + weight*object$beta[,right]
if (length(lambda) > 1) colnames(beta) <- round(lambda, 4)
}
beta
}