-
Notifications
You must be signed in to change notification settings - Fork 34
/
Copy patheval_phys_data.py
104 lines (87 loc) · 4.11 KB
/
eval_phys_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import sys
import cv2
import numpy as np
from tqdm import tqdm
def eval_phys_data_single_pendulum(data_filepath, num_vids, num_frms, save_path):
from eval_phys_single_pendulum import eval_physics, phys_vars_list
phys = {p_var:[] for p_var in phys_vars_list}
for n in tqdm(range(num_vids)):
seq_filepath = os.path.join(data_filepath, str(n))
frames = []
for p in range(num_frms):
frame_p = cv2.imread(os.path.join(seq_filepath, str(p)+'.png'))
frames.append(frame_p)
phys_tmp = eval_physics(frames)
for p_var in phys_vars_list:
phys[p_var].append(phys_tmp[p_var])
for p_var in phys_vars_list:
phys[p_var] = np.array(phys[p_var])
np.save(save_path, phys)
def eval_phys_data_double_pendulum(data_filepath, num_vids, num_frms, save_path):
from eval_phys_double_pendulum import eval_physics, phys_vars_list
phys = {p_var:[] for p_var in phys_vars_list}
for n in tqdm(range(num_vids)):
seq_filepath = os.path.join(data_filepath, str(n))
frames = []
for p in range(num_frms):
frame_p = cv2.imread(os.path.join(seq_filepath, str(p)+'.png'))
frames.append(frame_p)
phys_tmp = eval_physics(frames)
for p_var in phys_vars_list:
phys[p_var].append(phys_tmp[p_var])
for p_var in phys_vars_list:
phys[p_var] = np.array(phys[p_var])
# remove outliers
thresh_1 = np.nanpercentile(np.abs(phys['vel_theta_1']), 98)
thresh_2 = np.nanpercentile(np.abs(phys['vel_theta_2']), 98)
for n in range(num_vids):
for p in range(num_frms):
if (not np.isnan(phys['vel_theta_1'][n, p]) and np.abs(phys['vel_theta_1'][n, p]) >= thresh_1) \
or (not np.isnan(phys['vel_theta_2'][n, p]) and np.abs(phys['vel_theta_2'][n, p]) >= thresh_2):
phys['vel_theta_1'][n, p] = np.nan
phys['vel_theta_2'][n, p] = np.nan
phys['kinetic energy'][n, p] = np.nan
phys['total energy'][n, p] = np.nan
np.save(save_path, phys)
def eval_phys_data_elastic_pendulum(data_filepath, num_vids, num_frms, save_path):
from eval_phys_elastic_pendulum import eval_physics, phys_vars_list
phys = {p_var:[] for p_var in phys_vars_list}
for n in tqdm(range(num_vids)):
seq_filepath = os.path.join(data_filepath, str(n))
frames = []
for p in range(num_frms):
frame_p = cv2.imread(os.path.join(seq_filepath, str(p)+'.png'))
frames.append(frame_p)
phys_tmp = eval_physics(frames)
for p_var in phys_vars_list:
phys[p_var].append(phys_tmp[p_var])
for p_var in phys_vars_list:
phys[p_var] = np.array(phys[p_var])
# remove outliers
thresh_1 = np.nanpercentile(np.abs(phys['vel_theta_1']), 98)
thresh_2 = np.nanpercentile(np.abs(phys['vel_theta_2']), 98)
thresh_z = np.nanpercentile(np.abs(phys['vel_z']), 98)
for n in range(num_vids):
for p in range(num_frms):
if (not np.isnan(phys['vel_theta_1'][n, p]) and np.abs(phys['vel_theta_1'][n, p]) >= thresh_1) \
or (not np.isnan(phys['vel_theta_2'][n, p]) and np.abs(phys['vel_theta_2'][n, p]) >= thresh_2) \
or (not np.isnan(phys['vel_z'][n, p]) and np.abs(phys['vel_z'][n, p]) >= thresh_z):
phys['vel_theta_1'][n, p] = np.nan
phys['vel_theta_2'][n, p] = np.nan
phys['vel_z'][n, p] = np.nan
phys['kinetic energy'][n, p] = np.nan
phys['total energy'][n, p] = np.nan
np.save(save_path, phys)
if __name__ == '__main__':
dataset = str(sys.argv[1])
data_filepath = str(sys.argv[2])
save_path = os.path.join(data_filepath, 'phys_vars.npy')
if dataset == 'single_pendulum':
eval_phys_data_single_pendulum(data_filepath, 1200, 60, save_path)
elif dataset == 'double_pendulum':
eval_phys_data_double_pendulum(data_filepath, 1100, 60, save_path)
elif dataset == 'elastic_pendulum':
eval_phys_data_elastic_pendulum(data_filepath, 1200, 60, save_path)
else:
assert False, 'Unknown system...'