-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
71 lines (59 loc) · 2.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import gymnasium as gym
import gymnasium_robotics
import matplotlib.pyplot as plt
import numpy as np
from sb3_contrib import TQC
from stable_baselines3.common.env_util import make_vec_env
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.callbacks import BaseCallback
gym.register_envs(gymnasium_robotics)
# Create the FetchReach-v3 environment
env = gym.make("FetchReach-v4", render_mode="human")
# Custom callback to store rewards
class RewardLogger(BaseCallback):
def __init__(self, check_freq: int = 1000):
super().__init__()
self.check_freq = check_freq
self.rewards = []
self.timesteps = []
def _on_step(self) -> bool:
if self.n_calls % self.check_freq == 0:
mean_reward, _ = evaluate_policy(self.model, self.training_env, n_eval_episodes=10)
self.rewards.append(mean_reward)
self.timesteps.append(self.num_timesteps)
return True
# Initialize model
model = TQC("MultiInputPolicy",
env,
policy_kwargs={"net_arch": [512, 512, 512]},
learning_starts=1000,
target_update_interval=10,
train_freq=(1, "step"),
gradient_steps=1,
verbose=1)
# Evaluate before training
print("Evaluation before training:")
mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=10)
print(f"Mean reward: {mean_reward:.2f} +/- {std_reward:.2f}")
# Train with logging callback
reward_logger = RewardLogger(check_freq=5000)
model.learn(total_timesteps=150000, callback=reward_logger)
# Save the trained model
model.save("tqc_fetchreach_150k")
print("Model saved as tqc_fetchreach_150k.zip")
# Load the trained model
loaded_model = TQC.load("tqc_fetchreach_150k", env=env)
print("Loaded the saved model.")
# Evaluate after training
print("Evaluation after training:")
mean_reward, std_reward = evaluate_policy(loaded_model, env, n_eval_episodes=10)
print(f"Mean reward: {mean_reward:.2f} +/- {std_reward:.2f}")
# Plot learning curve
plt.plot(reward_logger.timesteps, reward_logger.rewards, marker='o', linestyle='-')
plt.xlabel("Timesteps")
plt.ylabel("Mean Reward")
plt.title("Training Progress")
plt.grid()
plt.savefig("training_progress.png")
plt.show()
env.close()