-
Notifications
You must be signed in to change notification settings - Fork 1
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add page on cloud detection performance at low sun elevation #19
Comments
Thanks for starting this issue. Here are plots of those date ranges, with code below. They just happen to be the first dates I noticed. I haven't checked to make sure that timestamp conventions are correct, but the concept is clear either way. import pvlib
import pandas as pd
import matplotlib.pyplot as plt
lat, lon = 34.2547, -89.8729 # Goodwin Creek SURFRAD
nsrdb_data, _ = pvlib.iotools.get_psm3(latitude=lat, longitude=lon,
api_key='DEMO_KEY', email='[email protected]',
names='2021', interval=30)
# convert to UTC
nsrdb_data.index = nsrdb_data.index.tz_convert('UTC')
surfrad_data1, _ = pvlib.iotools.read_surfrad(filename='https://gml.noaa.gov/aftp/data/radiation/surfrad/Goodwin_Creek_MS/2021/gwn21008.dat')
surfrad_data2, _ = pvlib.iotools.read_surfrad(filename='https://gml.noaa.gov/aftp/data/radiation/surfrad/Goodwin_Creek_MS/2021/gwn21009.dat')
surfrad_data = pd.concat([surfrad_data1,surfrad_data2])
surfrad_30m = surfrad_data.resample('30T').mean()
mask = (nsrdb_data.index > '2021-01-08 10:00') & (nsrdb_data.index < '2021-01-10 02:00')
plt.plot(nsrdb_data.GHI[mask], drawstyle='steps', label='nsrdb ghi')
plt.plot(surfrad_30m.ghi, drawstyle='steps', label='surfrad ghi')
plt.legend()
plt.show()
surfrad_data3, _ = pvlib.iotools.read_surfrad(filename='https://gml.noaa.gov/aftp/data/radiation/surfrad/Goodwin_Creek_MS/2021/gwn21032.dat')
surfrad_30m = surfrad_data3.resample('30T').mean()
mask = (nsrdb_data.index > '2021-02-01 10:00') & (nsrdb_data.index < '2021-02-02 02:00')
plt.plot(nsrdb_data.GHI[mask], drawstyle='steps', label='nsrdb ghi')
plt.plot(surfrad_30m.ghi, drawstyle='steps', label='surfrad ghi')
plt.legend()
plt.show()
surfrad_data4, _ = pvlib.iotools.read_surfrad(filename='https://gml.noaa.gov/aftp/data/radiation/surfrad/Goodwin_Creek_MS/2021/gwn21038.dat')
surfrad_data5, _ = pvlib.iotools.read_surfrad(filename='https://gml.noaa.gov/aftp/data/radiation/surfrad/Goodwin_Creek_MS/2021/gwn21039.dat')
surfrad_data6, _ = pvlib.iotools.read_surfrad(filename='https://gml.noaa.gov/aftp/data/radiation/surfrad/Goodwin_Creek_MS/2021/gwn21040.dat')
surfrad_data = pd.concat([surfrad_data4,surfrad_data5,surfrad_data6,])
surfrad_30m = surfrad_data.resample('30T').mean()
mask = (nsrdb_data.index > '2021-02-07 10:00') & (nsrdb_data.index < '2021-02-10 02:00')
plt.plot(nsrdb_data.GHI[mask], drawstyle='steps', label='nsrdb ghi')
plt.plot(surfrad_30m.ghi, drawstyle='steps', label='surfrad ghi')
plt.legend()
plt.show() |
In several NREL reports that include validation, it was only performed on time intervals with solar zenith angles less than 80 degrees: https://www.nrel.gov/docs/fy17osti/67722.pdf There's also https://doi.org/10.1063/5.0030992, which is referenced in the paper Kevin linked (emphasis mine):
But I can't seem to find a free version of that paper. |
@williamhobbs It should be available on Research Gate. |
Thanks! Apparently I didn’t look very hard… |
Courtesy of @williamhobbs:
Source: https://doi.org/10.1016/j.solener.2022.01.004
Other examples: the GCR SURFRAD station around these dates: 2021-01-09, 2021-02-01, 2021-02-08
The text was updated successfully, but these errors were encountered: