-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHw1BisectionAlgorithm.py
75 lines (59 loc) · 2.36 KB
/
Hw1BisectionAlgorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import numpy as np
import matplotlib.pyplot as plt
import math
# Home work 1: Implement the bisection algorithm from page 23
# in the Computational Statistics textbook.
# Given: the function
# log(x)
# g(x)=------
# (1+x)
#
# This yeilds
# 1+ (1/x) - log(x)
# g'(x) = --------------------
# (1 + x)^2
gPrime = lambda x: (1 + (1/x) - np.log(x))/(1 + x)**2
newBound = lambda a,b: (1/2)*(a + b)
def rootOfGPrime(a, b, g, maxIterations = 10):
# The first check, if g(a) * g(b) > 0, there is no root
if g(a) * g(b) > 0.0:
raise ArithmeticError("No 0 in [{}, {}]".format(a, b))
found = False
iteration = 0
while iteration < maxIterations:
# Generate a guess by means of
# x(t) = (1/2)*(g(a) * g(b))
x_t = (1/2)*(a + b)
# Ok, the checks are now done, perform the algorithm
rootCandidate = g(x_t)
print("x_t {} rootCandidate is {} [{}, {}]".format(x_t, rootCandidate, a, b))
# using default values for isclose() as this defaults to a relative
# tolerance of 1*10^-9 and an absolute tolerance of 0.0
if np.isclose(rootCandidate, 0.0):
found = True
break
# We haven't found a root, so shrink the interval
if g(a) * g(x_t) <= 0:
b = x_t
else:
a = x_t
iteration += 1
if found:
print("root candidate found after {} iterations".format(iteration))
return abs(rootCandidate) if rootCandidate == -0.0 else rootCandidate
else:
raise ArithmeticError("Unable to find a root for g in [{}, {}]".format(a, b))
if __name__ == "__main__":
print("Looking for some roots")
print("Starting with something simple: x^2")
root = rootOfGPrime(-1, 1, lambda x: 2*x, 4)
assert math.isclose(0.0, root)
print("{} is a local minimum for x^2".format(root))
# Find root of x^2 + x
root = rootOfGPrime(-2, 0, lambda x: 2*x + 1, 3)
assert math.isclose(root, 0.0)
print("{} is a local minimum x^2 + x".format(root))
root = rootOfGPrime(-1, 1, lambda x: -2*x)
print("{} minimizes -x^2 - 1".format(root))
root = rootOfGPrime(1, 5, lambda x: (1 + (1/x) - np.log(x))/(1 + x)**2, 20)
print("{} maximizes (log(x))/(1+x) inside [1, 5]".format(root))