-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
43 lines (32 loc) · 1.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from transformers import ViltProcessor, ViltForQuestionAnswering
import cv2
import pandas as pd
# questions will be answerd by the model
questions = ['is the person a male or a female?' , 'is the person wearing a hat?'
, 'what color is the shirt?', 'what color is the trouser or the skirt or the short?',
'is the person wearing a tie?','is the person wearing a trouser?'
, 'is the person wearing a glasses?' , 'is the person wearing a short?',
'is the person fat?']
maped_questions = ['gender', 'hat', 'shirt_color', 'trouser_color', 'tie', 'trouser', 'glasses', 'short', 'fat']
# load model
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
# load image
img = cv2.imread('fat_man.jpg')
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
answer = []
df = pd.DataFrame(columns=['question', 'answer'])
# loop over questions
for question in questions:
# prepare inputs
questions_maped = maped_questions[questions.index(question)]
encoding = processor(img, question, return_tensors="pt")
# forward pass
outputs = model(**encoding)
logits = outputs.logits
idx = logits.argmax(-1).item()
# print("Predicted answer:", model.config.id2label[idx])
answer.append(model.config.id2label[idx])
df = df.append({'question': questions_maped, 'answer': model.config.id2label[idx]}, ignore_index=True)
print('the answer is ',answer)
print(df)