-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprime_functions.py
214 lines (182 loc) · 4.94 KB
/
prime_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from other_functions import factorsproduct, notfactors_forprime
# Some functions are implemented below to obtain or verify prime numbers.
# Some of them are similar to functions from SymPy library.
# Note: The functions are not very efficient for big numbers.
# For example, the function allprevprimes(n) is not efficient for n > 10**6.
# For big numbers, it is recommended to use the functions from SymPy library or
# use the primality_test function from primality_test.py file.
def inefficient_isprime(n: int) -> bool:
# Inefficient (and simpliest) way to verify if a number is prime or not.
"""
Args :
n: int - n >= 1
Returns :
bool - True if n is prime, False otherwise.
"""
for k in range(2, n):
if n % k == 0:
return False
return True
def isprime(n: int) -> bool:
# More "efficient" way to verify if a number is prime or not. Not very efficient for big numbers.
"""
Args :
n: int - n >= 1
Returns :
bool - True if n is prime, False otherwise.
"""
if (n % 2 == 0 and n > 2)\
or (n % 3 == 0 and n > 3)\
or (n % 5 == 0 and n > 5)\
or n<2:
return False
k = 7
while n**(1/2) >= k:
if n % k == 0 and n**(1/2) >= k:
return False
k += 2
if n % k == 0 and n**(1/2) >= k:
return False
k += 2
if n % k == 0 and n**(1/2) >= k:
return False
k += 2
if n % k == 0 and n**(1/2) >= k:
return False
k += 4
return True
def allprevprimes(n: int) -> list:
"""
Args :
n: int - n >= 2
Returns :
list - A list of all primes <= n.
"""
prime_numbers = [2]
i = 3
while n >= i:
if notfactors_forprime(prime_numbers, i):
prime_numbers.append(i)
i += 2
return prime_numbers
def arecoprime(a: int, b: int) -> bool:
# It verifies if two numbers doesn't have factors in common.
# Checkout the definition of CoPrimes for more info.
"""
Args :
a: int - a >= 1
b: int - b >= 1
Returns :
bool - True if a and b are coprime, False otherwise.
"""
if (a % 2 == 0) and (b % 2 == 0):
return False
k = 3
if a > b:
while a > k:
if (a % k == 0) and (b % k == 0):
return False
k += 2
else:
while b > k:
if (a % k == 0) and (b % k == 0):
return False
k += 2
return True
def nextprime(n: int) -> int:
"""
Args :
n: int - n >= 1
Returns :
int - The next prime > n.
"""
prime_numbers = allprevprimes(n)
if n % 2 == 0:
n += 1
while True:
if notfactors_forprime(prime_numbers, n):
return n
n += 2
def prevprime(n: int) -> int:
"""
Args :
n: int - n >= 1
Returns :
int - The previous prime < n.
"""
prime_numbers = allprevprimes(n-1)
return prime_numbers[len(prime_numbers)-1]
def primerange(a: int, b: int) -> list:
"""
Args :
a: int - a >= 1
b: int - b >= 1
Returns :
list - A list of prime numbers in the range [a, b[.
"""
prime_numbers = allprevprimes(a)
final_list = []
if a <= 2:
a = 2
if b > 2:
final_list.append(2)
elif isprime(a):
final_list.append(a)
while a < b:
if notfactors_forprime(prime_numbers, a):
prime_numbers.append(a)
final_list.append(a)
a += 1
return final_list
def primepi(n: int) -> int:
"""
Args :
n: int - n >= 1
Returns :
int - The number of prime numbers <= n.
"""
num = len(allprevprimes(n))
return num
def sheldonprime(n: int) -> bool:
# Checkout the definition of sheldon prime for more info.
"""
Args :
n: int - n >= 1
Returns :
bool - True if n is a sheldon prime, False otherwise.
"""
inverse_number = int(str(n)[::-1])
sum_num = int(factorsproduct(list(str(n))))
inverse_sum = int(str(sum_num)[::-1])
if not isprime(n) or not isprime(inverse_number):
return False
if n > inverse_number:
prime_numbers = allprevprimes(n)
else:
prime_numbers = allprevprimes(inverse_number)
primepi_n = prime_numbers.index(n) + 1
primepi_inv = prime_numbers.index(inverse_number) + 1
if primepi_n != sum_num or inverse_sum != primepi_inv:
return False
return True
def prime(nth: int) -> int:
"""
Args :
nth: int - nth >= 1
Returns :
int - The nth prime number.
In case nth < 1, returns None.
"""
prime_numbers = [2]
i = 3
num = 1
if nth < 1:
return None
elif nth == 1:
return 2
while nth > num:
if notfactors_forprime(prime_numbers, i):
prime_numbers.append(i)
num += 1
i += 2
return i-2