-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdropout.py
70 lines (48 loc) · 1.76 KB
/
dropout.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
from neunet.autograd import Tensor
from neunet.nn.modules import Module
class _DropoutTensor(Tensor): # tensor for static backpropagation
def __init__(self, data, args, op, device):
super().__init__(data, args, op, device=device)
def grad_fn(X: Tensor, mask, grad):
X.apply_grad(grad * mask)
self.grad_fn = grad_fn
class Dropout(Module): # layer with static backpropagation
def __init__(self, p: float=0.5):
self.p = p
self.scale = 1 / (1 - p)
self.training = True
def forward(self, X: Tensor) -> Tensor:
if not isinstance(X, Tensor):
raise TypeError("Input must be a tensor")
if self.training:
mask = (
X.xp.random.binomial(1, 1 - self.p, size=X.data.shape).astype(X.data.dtype)
* self.scale
)
else:
mask = 1
O = X.data * mask
return _DropoutTensor(O, (X, mask), "dropout", device=X.device)
def __call__(self, X):
return self.forward(X)
def train(self, mode=True):
self.training = mode
def eval(self):
self.training = False
# class Dropout(): # layer with dynamic backpropagation
# def __init__(self, p = 0.5):
# self.p = p
# self.scale = 1 / (1 - p)
# self.training = True
# def forward(self, X):
# if self.training:
# mask = X.xp.random.binomial(1, 1 - self.p, size = X.data.shape) * self.scale
# else:
# mask = 1
# return X * mask
# def __call__(self, X):
# return self.forward(X)
# def train(self, mode = True):
# self.training = mode
# def eval(self):
# self.training = False