-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathleverage_scores.py
46 lines (36 loc) · 1.32 KB
/
leverage_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
from sklearn.decomposition import randomized_svd
def compute_leverage(matrixA, low_rank=False, n_components=20,
n_iter=5):
'''
Computes leverage scores of the input matrix A with two possible options
1) Exact Leverage Scores
2) Low-rank leverage scores
In each case the leverage scores are computed using the SVD. Here we
compute the row leverage scores for the imput matrix A and a leverage score
vector corresponding to each row is returned.
In either case, the SVD is computed as: U, S, V = svd(matrixA)
Parameters
----------
matrixA: 2D array
low-rank: bool (optional)
default: False
n_components: int (optional)
default: 20
n_iter: int (optional)
default: 5
Returns
-------
lev_vec: 1D array
'''
# Transpose is taken for computing row leverage scores
_ , _, v_mat = np.linalg.svd(matrixA.T, full_matrices=False)
# faster approximation of the SVD using randomized SVD from sklearn.
if low_rank:
_, _, v_mat = randomized_svd(matrixA.T,
n_components=n_components,
n_iter=n_iter,
random_state=None)
# gets the row-norms
lev_vec = np.sum(v_mat ** 2, axis=0)
return lev_vec