-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathExample_get_apr_by_block.cpp
256 lines (198 loc) · 9.04 KB
/
Example_get_apr_by_block.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//
// Created by joel on 03.11.20.
//
const char* usage = R"(
Form the APR form image: Takes an uint16_t input tiff image and forms the APR and saves it as hdf5. The hdf5 output of this program
can be used with the other apr examples, and also viewed with HDFView.
Usage:
Auto parameters are currently not supported in this APR pipeline. Minimal usage:
Example_get_apr_by_block -i input_image_tiff -d input_directory [-o name_of_output -od output_directory] -Ip_th intensity_threshold
-sigma_th intensity_scale_threshold -grad_th gradient_threshold -lambda lambda_value
Parameter explanations:
-Ip_th intensity_threshold (will ignore areas of image below this threshold, useful for removing camera artifacts or auto-flouresence)
-sigma_th intensity_scale_threshold (the computed local intensity scale is clipped from below to this value)
-grad_th gradient_threshold (gradients lower than this threshold are set to 0)
-lambda lambda_value (directly set the value of the gradient smoothing parameter lambda (reasonable range 0.1-10, default: 3)
Additional settings controlling the memory usage:
-z_block_size value (number of z-slices to process in each tile. default: 128)
-z_ghost value (number of ghost slices to use in both directions for the blocked APR pipeline. default: 16)
-z_ghost_sampling value (number of ghost slices to use in both directions for the blocked particle sampling. default: 64)
Note that these parameters affect the solution. To ensure consistency between z-blocks, sufficiently many ghost slices
must be used. The exact influence of this has not yet been studied.
)";
#include <algorithm>
#include <iostream>
#include "ConfigAPR.h"
#include "Example_get_apr_by_block.hpp"
#include "io/APRFile.hpp"
#include "data_structures/APR/particles/ParticleData.hpp"
#include "data_structures/APR/APR.hpp"
#include "algorithm/APRConverterBatch.hpp"
int runAPR(cmdLineOptions options) {
APR apr;
APRConverterBatch<float> aprConverter;
//read in the command line options into the parameters file
aprConverter.par.Ip_th = options.Ip_th;
aprConverter.par.rel_error = options.rel_error;
aprConverter.par.lambda = options.lambda;
aprConverter.par.mask_file = options.mask_file;
aprConverter.par.sigma_th = options.sigma_th;
aprConverter.par.neighborhood_optimization = options.neighborhood_optimization;
aprConverter.par.output_steps = options.output_steps;
aprConverter.par.grad_th = options.grad_th;
aprConverter.par.auto_parameters = options.auto_parameters;
//where things are
aprConverter.par.input_image_name = options.input;
aprConverter.par.input_dir = options.directory;
aprConverter.par.name = options.output;
aprConverter.par.output_dir = options.output_dir;
aprConverter.fine_grained_timer.verbose_flag = false;
aprConverter.method_timer.verbose_flag = false;
aprConverter.computation_timer.verbose_flag = false;
aprConverter.allocation_timer.verbose_flag = false;
aprConverter.total_timer.verbose_flag = true;
aprConverter.z_block_size = options.z_block_size;
aprConverter.ghost_z = options.z_ghost;
aprConverter.verbose = true;
aprConverter.set_sparse_pulling_scheme(false); // use sparse particle cell tree in pulling scheme?
aprConverter.set_generate_linear(true); // generate linear or random access data structure?
APRTimer timer(true);
timer.start_timer("Get APR by block");
bool success = aprConverter.get_apr(apr);
timer.stop_timer();
if(success){
float num_pix = (float)apr.org_dims(0) * (float)apr.org_dims(1) * (float)apr.org_dims(2);
float num_parts = apr.total_number_particles();
float cr = num_pix / num_parts;
std::cout << "APR Conversion successful! CR = " << cr << std::endl;
timer.start_timer("Sample particles by block");
ParticleData<uint16_t> parts;
parts.sample_parts_from_img_blocked(apr, options.directory + options.input, options.z_block_size, options.z_ghost_sampling);
timer.stop_timer();
//output
std::string save_loc = options.output_dir;
std::string file_name = options.output;
std::cout << std::endl;
float original_pixel_image_size = (2.0f* apr.org_dims(0)* apr.org_dims(1)* apr.org_dims(2))/1000000.0f;
std::cout << "Original image size: " << original_pixel_image_size << " MB" << std::endl;
//write the APR and particles to hdf5 file
timer.start_timer("write output to file");
APRFile aprFile;
aprFile.open(save_loc + file_name + ".apr");
aprFile.write_apr(apr, 0, "t", options.store_tree);
aprFile.write_particles("particles", parts);
timer.stop_timer();
float apr_file_size = aprFile.current_file_size_MB();
float compression_ratio = original_pixel_image_size / apr_file_size;
float computational_ratio = (1.0f* apr.org_dims(0)* apr.org_dims(1)* apr.org_dims(2))/(1.0f*apr.total_number_particles());
std::cout << std::endl;
std::cout << "Computational Ratio (Pixels/Particles): " << computational_ratio << std::endl;
std::cout << "Lossy Compression Ratio: " << compression_ratio << std::endl;
std::cout << std::endl;
} else {
std::cout << "Oops, something went wrong. APR not computed :(." << std::endl;
}
return 0;
}
int main(int argc, char **argv) {
//input parsing
cmdLineOptions options = read_command_line_options(argc, argv);
return runAPR(options);
}
bool command_option_exists(char **begin, char **end, const std::string &option)
{
return std::find(begin, end, option) != end;
}
char* get_command_option(char **begin, char **end, const std::string &option)
{
char ** itr = std::find(begin, end, option);
if (itr != end && ++itr != end)
{
return *itr;
}
return 0;
}
cmdLineOptions read_command_line_options(int argc, char **argv){
cmdLineOptions result;
if(argc == 1) {
std::cerr << argv[0] << std::endl;
std::cerr << "APR version " << ConfigAPR::APR_VERSION << std::endl;
std::cerr << "Short usage: \"" << argv[0] << " -i inputfile [-d directory] [-o outputfile]\"" << std::endl;
std::cerr << usage << std::endl;
exit(1);
}
if(command_option_exists(argv, argv + argc, "-i"))
{
result.input = std::string(get_command_option(argv, argv + argc, "-i"));
} else {
std::cout << "Input file required" << std::endl;
exit(2);
}
if(command_option_exists(argv, argv + argc, "-o"))
{
result.output = std::string(get_command_option(argv, argv + argc, "-o"));
}
if(command_option_exists(argv, argv + argc, "-d"))
{
result.directory = std::string(get_command_option(argv, argv + argc, "-d"));
}
if(command_option_exists(argv, argv + argc, "-od"))
{
result.output_dir = std::string(get_command_option(argv, argv + argc, "-od"));
} else {
result.output_dir = result.directory;
}
if(command_option_exists(argv, argv + argc, "-lambda"))
{
result.lambda = std::stof(std::string(get_command_option(argv, argv + argc, "-lambda")));
}
if(command_option_exists(argv, argv + argc, "-Ip_th"))
{
result.Ip_th = std::stof(std::string(get_command_option(argv, argv + argc, "-Ip_th")));
}
if(command_option_exists(argv, argv + argc, "-grad_th"))
{
result.grad_th = std::stof(std::string(get_command_option(argv, argv + argc, "-grad_th")));
}
if(command_option_exists(argv, argv + argc, "-sigma_th"))
{
result.sigma_th = std::stof(std::string(get_command_option(argv, argv + argc, "-sigma_th")));
}
if(command_option_exists(argv, argv + argc, "-rel_error"))
{
result.rel_error = std::stof(std::string(get_command_option(argv, argv + argc, "-rel_error")));
}
if(command_option_exists(argv, argv + argc, "-z_block_size"))
{
result.z_block_size = std::stoi(std::string(get_command_option(argv, argv + argc, "-z_block_size")));
}
if(command_option_exists(argv, argv + argc, "-z_ghost"))
{
result.z_ghost = std::stoi(std::string(get_command_option(argv, argv + argc, "-z_ghost")));
}
if(command_option_exists(argv, argv + argc, "-z_ghost_sampling"))
{
result.z_ghost_sampling = std::stoi(std::string(get_command_option(argv, argv + argc, "-z_ghost_sampling")));
}
if(command_option_exists(argv, argv + argc, "-mask_file"))
{
result.mask_file = std::string(get_command_option(argv, argv + argc, "-mask_file"));
}
if(command_option_exists(argv, argv + argc, "-neighborhood_optimization_off"))
{
result.neighborhood_optimization = false;
}
if(command_option_exists(argv, argv + argc, "-output_steps"))
{
result.output_steps = true;
}
if(command_option_exists(argv, argv + argc, "-store_tree"))
{
result.store_tree = true;
}
if(command_option_exists(argv, argv + argc, "-auto_parameters"))
{
result.auto_parameters = true;
}
return result;
}