-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathresnet.py
218 lines (168 loc) · 6.05 KB
/
resnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""This ResNet implementation is based on the one in torchvision."""
import mlx.nn as nn
from layers import flatten, global_avg_pool2d, max_pool2d
__all__ = [
"ResNet",
"resnet18",
"resnet34",
"resnet50",
"resnet101",
"resnet152",
]
def conv3x3(in_planes, out_planes, stride=1, padding=1):
"""3x3 convolution with padding."""
return nn.Conv2d(
in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=padding,
bias=False,
)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution."""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion: int = 1
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
) -> None:
super().__init__()
norm_layer = nn.LayerNorm
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU()
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def __call__(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class Bottleneck(nn.Module):
# Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
# while original implementation places the stride at the first 1x1 convolution(self.conv1)
# according to "Deep residual learning for image recognition" https://arxiv.org/abs/1512.03385.
# This variant is also known as ResNet V1.5 and improves accuracy according to
# https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
expansion: int = 4
def __init__(
self,
inplanes,
planes,
stride=1,
downsample=None,
):
super().__init__()
width = planes
norm_layer = nn.LayerNorm
# Both self.conv2 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv1x1(inplanes, width)
self.bn1 = norm_layer(width)
self.conv2 = conv3x3(width, width, stride)
self.bn2 = norm_layer(width)
self.conv3 = conv1x1(width, planes * self.expansion)
self.bn3 = norm_layer(planes * self.expansion)
self.relu = nn.ReLU()
self.downsample = downsample
self.stride = stride
def __call__(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(
self,
block,
layers,
num_classes,
):
super().__init__()
self._norm_layer = nn.LayerNorm
self.inplanes = 64
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = self._norm_layer(self.inplanes)
self.relu = nn.ReLU()
self.maxpool = max_pool2d
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.avgpool = global_avg_pool2d
self.fc = nn.Linear(512 * block.expansion, num_classes)
def _make_layer(
self,
block,
planes,
blocks,
stride=1,
):
norm_layer = self._norm_layer
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _forward_impl(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = flatten(x)
x = self.fc(x)
return x
def __call__(self, x):
return self._forward_impl(x)
def _resnet(block, layers, **kwargs):
return ResNet(block, layers, **kwargs)
def resnet18(*args, **kwargs):
"""ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__."""
return _resnet(BasicBlock, [2, 2, 2, 2], *args, **kwargs)
def resnet34(*args, **kwargs):
"""ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__."""
return _resnet(BasicBlock, [3, 4, 6, 3], *args, **kwargs)
def resnet50(*args, **kwargs):
"""ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__."""
return _resnet(Bottleneck, [3, 4, 6, 3], *args, **kwargs)
def resnet101(*args, **kwargs):
"""ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__."""
return _resnet(Bottleneck, [3, 4, 23, 3], *args, **kwargs)
def resnet152(*args, **kwargs):
"""ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/abs/1512.03385>`__."""
return _resnet(Bottleneck, [3, 8, 36, 3], *args, **kwargs)