forked from Azure/azureml-examples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain-with-tensorboard-logging.py
110 lines (92 loc) · 3.34 KB
/
train-with-tensorboard-logging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Script from: https://github.com/PyTorchLightning/pytorch-lightning/blob/1.0.0rc2/pl_examples/basic_examples/autoencoder.py
from argparse import ArgumentParser
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import pytorch_lightning as pl
from torch.utils.data import random_split
from pytorch_lightning.loggers import TensorBoardLogger
try:
from torchvision.datasets.mnist import MNIST
from torchvision import transforms
except ModuleNotFoundError:
from tests.base.datasets import MNIST
class LitAutoEncoder(pl.LightningModule):
def __init__(self):
super().__init__()
self.encoder = nn.Sequential(
nn.Linear(28 * 28, 64), nn.ReLU(), nn.Linear(64, 3)
)
self.decoder = nn.Sequential(
nn.Linear(3, 64), nn.ReLU(), nn.Linear(64, 28 * 28)
)
def forward(self, x):
# in lightning, forward defines the prediction/inference actions
embedding = self.encoder(x)
return embedding
def training_step(self, batch, batch_idx):
x, y = batch
x = x.view(x.size(0), -1)
z = self.encoder(x)
x_hat = self.decoder(z)
loss = F.mse_loss(x_hat, x)
self.log("loss", loss)
return loss
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
return optimizer
def cli_main():
pl.seed_everything(1234)
# ------------
# args
# ------------
parser = ArgumentParser()
parser.add_argument("--batch_size", default=32, type=int)
parser.add_argument("--hidden_dim", type=int, default=128)
parser.add_argument("--logdir", type=str, default="./logs")
parser = pl.Trainer.add_argparse_args(parser)
args = parser.parse_args()
# ------------
# data
# ------------
dataset = MNIST("", train=True, download=True, transform=transforms.ToTensor())
mnist_test = MNIST("", train=False, download=True, transform=transforms.ToTensor())
mnist_train, mnist_val = random_split(dataset, [55000, 5000])
train_loader = DataLoader(mnist_train, batch_size=args.batch_size)
val_loader = DataLoader(mnist_val, batch_size=args.batch_size)
test_loader = DataLoader(mnist_test, batch_size=args.batch_size)
# ------------
# model
# ------------
model = LitAutoEncoder()
# ------------
# logging
# ------------
tb_logger = TensorBoardLogger(args.logdir)
# ------------
# training
# ------------
trainer = pl.Trainer.from_argparse_args(args, logger=tb_logger)
trainer.fit(model, train_loader, val_loader)
# ------------
# testing
# ------------
result = trainer.test(test_dataloaders=test_loader)
print(result)
if __name__ == "__main__":
cli_main()