-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplay_video.py
132 lines (102 loc) · 4.45 KB
/
play_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
### 讀取影片 ###
# Import packages
import os
import cv2
import numpy as np
import tensorflow as tf
import sys
# Import utilites
from utils import label_map_util
from utils import visualization_utils1 as vis_util
# Name of the directory containing the object detection module we're using
MODEL_NAME = 'inference_graph'
#IMAGE_NAME = '21.jpg'
# Grab path to current working directory
CWD_PATH = os.getcwd()
# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')
# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'training','labelmap.pbtxt')
# Path to image
#PATH_TO_IMAGE = os.path.join(CWD_PATH,'images/test/',IMAGE_NAME)
# Number of classes the object detector can identify
NUM_CLASSES = 10
# Load the label map.
# Label maps map indices to category names, so that when our convolution
# network predicts `5`, we know that this corresponds to `king`.
# Here we use internal utility functions, but anything that returns a
# dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
sess = tf.Session(graph=detection_graph)
# Define input and output tensors (i.e. data) for the object detection classifier
# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# 開啟影片檔案
cap = cv2.VideoCapture('my_video.avi')
# 設定擷取影像的尺寸大小
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 960)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 540)
# 使用 MJPG 編碼
fourcc = cv2.VideoWriter_fourcc(*'MJPG')
# 建立 VideoWriter 物件,輸出影片至 output.avi
# FPS 值為 20.0,解析度為 640x360
fps = cap.get(cv2.CAP_PROP_FPS)
#out = cv2.VideoWriter('output1.avi', fourcc, fps, (960, 540))
total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
count = 0
# 以迴圈從影片檔案讀取影格,並顯示出來
while(cap.isOpened()):
ret, frame = cap.read()
#break if nothing read
if not ret:
break
count += 1
if count % 3 == 1:
# Load image using OpenCV and
# expand image dimensions to have shape: [1, None, None, 3]
# i.e. a single-column array, where each item in the column has the pixel RGB value
#image = cv2.imread(PATH_TO_IMAGE)
image_expanded = np.expand_dims(frame, axis=0)
# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_expanded})
# Draw the results of the detection (aka 'visulaize the results')
vis_util.visualize_boxes_and_labels_on_image_array(
frame,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8,
min_score_thresh=0.60)
#out.write(frame)
cv2.imshow('frame',frame)
#if count % (total_frames / 10) == 0:
# print('progress: ' + str(count * 100 / total_frames) + '%')
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
#out.release()
cv2.destroyAllWindows()