You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
If the `percpu_alloc` parameter is not given to the kernel command line, the `embed` allocator will be used which embeds the first percpu chunk into bootmem with the [memblock](http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-1.html). The last allocator is the first chunk `page` allocator which maps the first chunk with `PAGE_SIZE` pages.
95
+
If the `percpu_alloc` parameter is not given to the kernel command line, the `embed` allocator will be used which embeds the first percpu chunk into bootmem with the [memblock](http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-1.html). The last allocator is the first chunk `page` allocator which maps the first chunk with `PAGE_SIZE` pages.
96
96
97
97
As I wrote above, first of all we make a check of the first chunk allocator type in the `setup_per_cpu_areas`. We check that first chunk allocator is not page:
You can read about `memblock` in the [Linux kernel memory management Part 1.](http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-1.html). As you can remember `memblock_reserve` function takes two parameters:
386
+
You can read about `memblock` in the [Linux kernel memory management Part 1.](http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-1.html). As you can remember `memblock_reserve` function takes two parameters:
Copy file name to clipboardexpand all lines: Initialization/linux-initialization-6.md
+3-3
Original file line number
Diff line number
Diff line change
@@ -97,7 +97,7 @@ After this we can see call of the:
97
97
memblock_x86_reserve_range_setup_data();
98
98
```
99
99
100
-
function. This function is defined in the same [arch/x86/kernel/setup.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c) source code file and remaps memory for the `setup_data` and reserved memory block for the `setup_data` (more about `setup_data` you can read in the previous [part](http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html) and about `ioremap` and `memblock` you can read in the [Linux kernel memory management](http://0xax.gitbooks.io/linux-insides/content/mm/index.html)).
100
+
function. This function is defined in the same [arch/x86/kernel/setup.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c) source code file and remaps memory for the `setup_data` and reserved memory block for the `setup_data` (more about `setup_data` you can read in the previous [part](http://0xax.gitbooks.io/linux-insides/content/Initialization/linux-initialization-5.html) and about `ioremap` and `memblock` you can read in the [Linux kernel memory management](http://0xax.gitbooks.io/linux-insides/content/MM/index.html)).
101
101
102
102
In the next step we can see following conditional statement:
After this we set the limit for the `memblock` allocation with the `memblock_set_current_limit` function (read more about `memblock` you can in the [Linux kernel memory management Part 2](https://github.com/0xAX/linux-insides/blob/master/mm/linux-mm-2.md)), it will be `ISA_END_ADDRESS` or `0x100000` and fill the `memblock` information according to `e820` with the call of the `memblock_x86_fill` function. You can see the result of this function in the kernel initialization time:
503
+
After this we set the limit for the `memblock` allocation with the `memblock_set_current_limit` function (read more about `memblock` you can in the [Linux kernel memory management Part 2](https://github.com/0xAX/linux-insides/blob/master/MM/linux-mm-2.md)), it will be `ISA_END_ADDRESS` or `0x100000` and fill the `memblock` information according to `e820` with the call of the `memblock_x86_fill` function. You can see the result of this function in the kernel initialization time:
This is the seventh part of the Linux Kernel initialization process which covers insides of the `setup_arch` function from the [arch/x86/kernel/setup.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c#L861). As you can know from the previous [parts](http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html), the `setup_arch` function does some architecture-specific (in our case it is [x86_64](http://en.wikipedia.org/wiki/X86-64)) initialization stuff like reserving memory for kernel code/data/bss, early scanning of the [Desktop Management Interface](http://en.wikipedia.org/wiki/Desktop_Management_Interface), early dump of the [PCI](http://en.wikipedia.org/wiki/PCI) device and many many more. If you have read the previous [part](http://0xax.gitbooks.io/linux-insides/content/Initialization/%20linux-initialization-6.html), you can remember that we've finished it at the `setup_real_mode` function. In the next step, as we set limit of the [memblock](http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-1.html) to the all mapped pages, we can see the call of the `setup_log_buf` function from the [kernel/printk/printk.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/printk/printk.c).
7
+
This is the seventh part of the Linux Kernel initialization process which covers insides of the `setup_arch` function from the [arch/x86/kernel/setup.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/arch/x86/kernel/setup.c#L861). As you can know from the previous [parts](http://0xax.gitbooks.io/linux-insides/content/Initialization/index.html), the `setup_arch` function does some architecture-specific (in our case it is [x86_64](http://en.wikipedia.org/wiki/X86-64)) initialization stuff like reserving memory for kernel code/data/bss, early scanning of the [Desktop Management Interface](http://en.wikipedia.org/wiki/Desktop_Management_Interface), early dump of the [PCI](http://en.wikipedia.org/wiki/PCI) device and many many more. If you have read the previous [part](http://0xax.gitbooks.io/linux-insides/content/Initialization/%20linux-initialization-6.html), you can remember that we've finished it at the `setup_real_mode` function. In the next step, as we set limit of the [memblock](http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-1.html) to the all mapped pages, we can see the call of the `setup_log_buf` function from the [kernel/printk/printk.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/kernel/printk/printk.c).
8
8
9
9
The `setup_log_buf` function setups kernel cyclic buffer and its length depends on the `CONFIG_LOG_BUF_SHIFT` configuration option. As we can read from the documentation of the `CONFIG_LOG_BUF_SHIFT` it can be between `12` and `21`. In the insides, buffer defined as array of chars:
Now `vsyscall` area is in the `fix-mapped` area. That's all about `map_vsyscall`, if you do not know anything about fix-mapped addresses, you can read [Fix-Mapped Addresses and ioremap](http://0xax.gitbooks.io/linux-insides/content/mm/linux-mm-2.html). We will see more about `vsyscalls` in the `vsyscalls and vdso` part.
299
+
Now `vsyscall` area is in the `fix-mapped` area. That's all about `map_vsyscall`, if you do not know anything about fix-mapped addresses, you can read [Fix-Mapped Addresses and ioremap](http://0xax.gitbooks.io/linux-insides/content/MM/linux-mm-2.html). We will see more about `vsyscalls` in the `vsyscalls and vdso` part.
Copy file name to clipboardexpand all lines: Initialization/linux-initialization-8.md
+3-3
Original file line number
Diff line number
Diff line change
@@ -255,7 +255,7 @@ pgtable_init();
255
255
vmalloc_init();
256
256
```
257
257
258
-
The first is `page_ext_init_flatmem` which depends on the `CONFIG_SPARSEMEM` kernel configuration option and initializes extended data per page handling. The `mem_init` releases all `bootmem`, the `kmem_cache_init` initializes kernel cache, the `percpu_init_late` - replaces `percpu` chunks with those allocated by [slub](http://en.wikipedia.org/wiki/SLUB_%28software%29), the `pgtable_init` - initializes the `page->ptl` kernel cache, the `vmalloc_init` - initializes `vmalloc`. Please, **NOTE** that we will not dive into details about all of these functions and concepts, but we will see all of they it in the [Linux kernel memory manager](http://0xax.gitbooks.io/linux-insides/content/mm/index.html) chapter.
258
+
The first is `page_ext_init_flatmem` which depends on the `CONFIG_SPARSEMEM` kernel configuration option and initializes extended data per page handling. The `mem_init` releases all `bootmem`, the `kmem_cache_init` initializes kernel cache, the `percpu_init_late` - replaces `percpu` chunks with those allocated by [slub](http://en.wikipedia.org/wiki/SLUB_%28software%29), the `pgtable_init` - initializes the `page->ptl` kernel cache, the `vmalloc_init` - initializes `vmalloc`. Please, **NOTE** that we will not dive into details about all of these functions and concepts, but we will see all of they it in the [Linux kernel memory manager](http://0xax.gitbooks.io/linux-insides/content/MM/index.html) chapter.
Here we register a [soft irq](http://0xax.gitbooks.io/linux-insides/content/interrupts/interrupts-9.html) that will call the `run_rebalance_domains` handler. After the `SCHED_SOFTIRQ` will be triggered, the `run_rebalance` will be called to rebalance a run queue on the current CPU.
536
+
Here we register a [soft irq](http://0xax.gitbooks.io/linux-insides/content/Interrupts/interrupts-9.html) that will call the `run_rebalance_domains` handler. After the `SCHED_SOFTIRQ` will be triggered, the `run_rebalance` will be called to rebalance a run queue on the current CPU.
537
537
538
538
The last two steps of the `sched_init` function is to initialization of scheduler statistics and setting `scheeduler_running` variable:
Here we can see the call of the `kmem_cache_create`. We already called the `kmem_cache_init` in the [init/main.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c#L485). This function create generalized caches again using the `kmem_cache_alloc` (more about caches we will see in the [Linux kernel memory management](http://0xax.gitbooks.io/linux-insides/content/mm/index.html) chapter). In our case, as we are using `kmem_cache_t` which will be used by the [slab](http://en.wikipedia.org/wiki/Slab_allocation) allocator and `kmem_cache_create` creates it. As you can see we pass five parameters to the `kmem_cache_create`:
86
+
Here we can see the call of the `kmem_cache_create`. We already called the `kmem_cache_init` in the [init/main.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/init/main.c#L485). This function create generalized caches again using the `kmem_cache_alloc` (more about caches we will see in the [Linux kernel memory management](http://0xax.gitbooks.io/linux-insides/content/MM/index.html) chapter). In our case, as we are using `kmem_cache_t` which will be used by the [slab](http://en.wikipedia.org/wiki/Slab_allocation) allocator and `kmem_cache_create` creates it. As you can see we pass five parameters to the `kmem_cache_create`:
87
87
88
88
* name of the cache;
89
89
* size of the object to store in cache;
@@ -394,7 +394,7 @@ The next couple of functions are related with the [perf](https://perf.wiki.kerne
394
394
local_irq_enable();
395
395
```
396
396
397
-
which expands to the `sti` instruction and making post initialization of the [SLAB](http://en.wikipedia.org/wiki/Slab_allocation) with the call of the `kmem_cache_init_late` function (As I wrote above we will know about the `SLAB` in the [Linux memory management](http://0xax.gitbooks.io/linux-insides/content/mm/index.html) chapter).
397
+
which expands to the `sti` instruction and making post initialization of the [SLAB](http://en.wikipedia.org/wiki/Slab_allocation) with the call of the `kmem_cache_init_late` function (As I wrote above we will know about the `SLAB` in the [Linux memory management](http://0xax.gitbooks.io/linux-insides/content/MM/index.html) chapter).
398
398
399
399
After the post initialization of the `SLAB`, next point is initialization of the console with the `console_init` function from the [drivers/tty/tty_io.c](https://github.com/torvalds/linux/blob/16f73eb02d7e1765ccab3d2018e0bd98eb93d973/drivers/tty/tty_io.c).
0 commit comments